J Biomech. 2021 Mar 15;120:110384. doi: 10.1016/j.jbiomech.2021.110384. Online ahead of print.
ABSTRACT
In the U.S., approximately 14 million tendon and ligament injuries are reported each year. Dry needling (DN) is a conservative treatment introduced to alleviate pain and restore function; however, it is invasive and has mixed success. Focused ultrasound (fUS) is a non-invasive technology that directs ultrasound energy into a well-defined focal volume. fUS induces thermal and/or mechanical bioeffects which can be controlled by the choice of ultrasound parameters. fUS could be an alternative to DN for treatment of tendon injuries, but the bioeffects must be established. Thus, the purpose of this pilot study was to compare the effect of DN and fUS on the mechanical properties and cell morphology of 30 ex vivo rat Achilles tendons. Tendons were randomly assigned to sham, DN, or fUS, with 10 tendons per group. Within each group, 5 tendons were evaluated mechanically, and 5 tendons were analyzed histologically. Elastic modulus in the DN (74.05 ± 15.0 MPa) group was significantly lower than sham (149.84 ± 59.1 MPa; p = 0.0094) and fUS (128.84 ± 28.3 MPa; p = 0.0453) groups. Stiffness in DN (329.05 ± 236.8 N/mm; p = 0.0034) and fUS (315.26 ± 68.9 N/mm; p = 0.0027) groups were significantly lower than sham (786.10 ± 238.7 N/mm) group. Histologically, localized necrosis was observed in 3 out of 5 tendons exposed to fUS, with surrounding tissue unharmed; no evidence of cellular injury was observed in DN or sham groups. These results suggest that fUS preserves the mechanical properties of tendon better than DN. Further studies are needed to evaluate fUS as an alternative, noninvasive treatment modality for tendon injuries.
PMID:33773298 | DOI:10.1016/j.jbiomech.2021.110384